Checkfu

Standard set

Grade 10 - Science 10 (2014)

Science (1996, 2003, 2006, 2014)Grades 10CSP ID: 8148E1693D7048E49D1F5F97496E71C2Standards: 249

Standards

Showing 249 of 249 standards.

Filter by depth

Depth 0

Science

A

Depth 0

Energy and Matter in Chemical Change

B

Depth 0

Energy Flow in Technological Systems

C

Depth 0

Cycling of Matter in Living Systems

D

Depth 0

Energy Flow in Global Systems

A.STSK

Depth 1

Outcomes for Science, Technology & Society (STS) & Knowledge

A.SK

Depth 1

Skill Outcomes

A.A

Depth 1

Attitude Outcomes

B.STSK

Depth 1

Outcomes for Science, Technology & Society (STS) & Knowledge

B.SK

Depth 1

Skill Outcomes

B.A

Depth 1

Attitude Outcomes

C.STSK

Depth 1

Outcomes for Science, Technology & Society (STS) & Knowledge

C.SK

Depth 1

Skill Outcomes

C.A

Depth 1

Attitude Outcomes

D.STSK

Depth 1

Outcomes for Science, Technology & Society (STS) & Knowledge

D.SK

Depth 1

Skill Outcomes

D.A

Depth 1

Attitude Outcomes

A.STS1

Depth 2

Describe the basic particles that make up the underlying structure of matter, and investigate related technologies 

A.STS2

Depth 2

Explain, using the periodic table, how elements combine to form compounds, and follow IUPAC guidelines for naming ionic compounds and simple molecular compounds

A.STS3

Depth 2

Identify and classify chemical changes, and write word and balanced chemical equations for significant chemical reactions, as applications of Lavoisier's law of conservation of mass

A.SK1

Depth 2

Initiating and Planning: Ask questions about observed relationships, and plan investigations of questions, ideas, problems and issues:

A.SK2

Depth 2

Performing and Recording: Conduct investigations into relationships between and among observable variables, and use a broad range of tools and techniques to gather and record data and information

A.SK3

Depth 2

Analyzing and Interpreting: Analyze data and apply mathematical and conceptual models to develop and assess possible solutions

A.SK4

Depth 2

Communication and Teamwork: Work as members of a team in addressing problems, and apply the skills and conventions of science in communicating information and ideas and in assessing results

A.A1

Depth 2

Interest in science

A.A2

Depth 2

Mutual Respect

A.A3

Depth 2

Scientific Inquiry

A.A4

Depth 2

Collaboration

A.A5

Depth 2

Stewardship

A.A6

Depth 2

Safety

B.STSK1

Depth 2

Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated

B.STSK2

Depth 2

Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems

B.STSK3

Depth 2

Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems

B.SK1

Depth 2

Initiating and Planning: Ask questions about observed relationships, and plan investigations of questions, ideas, problems and issues

B.SK2

Depth 2

Performing and Recording: Conduct investigations into relationships between and among observable variables, and use a broad range of tools and techniques to gather and record data and information

B.SK3

Depth 2

Analyzing and Interpreting: Analyze data and apply mathematical and conceptual models to develop and assess possible solutions

B.A1

Depth 2

Interest in Science

B.A2

Depth 2

Mutual Respect

B.A3

Depth 2

Scientific Inquiry

B.A4

Depth 2

Collaboration

B.A5

Depth 2

Stewardship

B.A6

Depth 2

Safety

C.STSK1

Depth 2

Explain the relationship between developments in imaging technology and the current understanding of the cell

C.STSK2

Depth 2

Describe the function of cell organelles and structures in a cell, in terms of life processes, and use models to explain these processes and their applications

C.STSK3

Depth 2

Analyze plants as an example of a multicellular organism with specialized structures at the cellular, tissue and system levels

C.SK1

Depth 2

Initiating and Planning:Ask questions about observed relationships, and plan investigations of questions, ideas, problems and issues

C.SK2

Depth 2

Performing and Recording: Conduct investigations into relationships between and among observable variables, and use a broad range of tools and techniques to gather and record data and information

C.SK3

Depth 2

Analyzing and Interpreting: Analyze data and apply mathematical and conceptual models to develop and assess possible solutions

C.SK4

Depth 2

Communication and Teamwork: Work as members of a team in addressing problems, and apply the skills and conventions of science in communicating information and ideas and in assessing results

C.A1

Depth 2

Interest in Science

C.A2

Depth 2

Mutual Respect

C.A3

Depth 2

Scientific Inquiry

C.A4

Depth 2

Collaboration  

C.A5

Depth 2

Stewardship

C.A6

Depth 2

Safety

D.STSK1

Depth 2

Describe how the relationships among input solar energy, output terrestrial energy and energy flow within the biosphere affect the lives of humans and other species

D.STSK2

Depth 2

Analyze the relationships among net solar energy, global energy transfer processes - primarily radiation, convection and hydrologic cycle - and climate.

D.STSK3

Depth 2

Relate climate to the characteristics of the world's major biomes, and compare biomes in different regions of the world

D.STSK4

Depth 2

Investigate and interpret the role of environmental factors on global energy transfer and climate change

D.SK1

Depth 2

Initiating and Planning: Ask questions about observed relationships, and plan investigations of questions, ideas, problems and issues

D.SK2

Depth 2

Performing and Recording: Conduct investigations into relationships between and among observable variables, and use a broad range of tools and techniques to gather and record data and information

D.SK3

Depth 2

Analyzing and Interpreting: Analyze data and apply mathematical and conceptual models to develop and assess possible solutions

D.SK4

Depth 2

Communication and Teamwork: Work as members of a team in addressing problems, and apply the skills and conventions of science in communicating information and ideas and in assessing results

D.A1

Depth 2

Interest in Science

D.A2

Depth 2

Mutual Respect

D.A3

Depth 2

Scientific Inquiry

D.A4

Depth 2

Collaboration

D.A5

Depth 2

Stewardship

D.A6

Depth 2

Safety

A.STS1A

Depth 3

identify historical examples of how humans worked with chemical substances to meet their basic needs (e.g., how pre-contact First Nations communities used biotic and abiotic materials to meet their needs)

A.STS1B

Depth 3

outline the role of evidence in the development of the atomic model consisting of protons and neutrons (nucleons) and electrons; i.e., Dalton, Thomson, Rutherford, Bohr

A.STS1C

Depth 3

identify examples of chemistry-based careers in the community (e.g., chemical engineering, cosmetology, food processing)

A.STS2A

Depth 3

illustrate an awareness of WHMIS guidelines, and demonstrate safe practices in the handling, storage and disposal of chemicals in the laboratory and at home

A.STS2B

Depth 3

explain the importance of and need for the IUPAC system of naming compounds, in terms of the work that scientists do and the need to communicate clearly and precisely

A.STS2C

Depth 3

explain, using the periodic table, how and why elements combine to form compounds in specific ratios

A.STS2D

Depth 3

predict formulas and write names for ionic and molecular compounds and common acids (e.g., sulfuric, hydrochloric, nitric, ethanoic), using a periodic table, a table of ions and IUPAC rules

A.STS2E

Depth 3

classify ionic and molecular compounds, acids and bases on the basis of their properties; i.e., conductivity, pH, solubility, state

A.STS2F

Depth 3

predict whether an ionic compound is relatively soluble in water, using a solubility chart

A.STS2G

Depth 3

relate the molecular structure of simple substances to their properties (e.g., describe how the properties of water are due to the polar nature of water molecules, and relate this property to the transfer of energy in physical and living systems)

A.STS2H

Depth 3

outline the issues related to personal and societal use of potentially toxic or hazardous compounds (e.g., health hazards due to excessive consumption of alcohol and nicotine; exposure to toxic substances; environmental concerns related to the handling, storage and disposal of heavy metals, strong acids, flammable gases, volatile liquids)

A.STS3A

Depth 3

provide examples of household, commercial and industrial processes that use chemical reactions to produce useful substances and energy (e.g., baking powder in baking, combustion of fuels, electrolysis of water into H2(g) and O2(g))

A.STS3B

Depth 3

identify chemical reactions that are significant in societies (e.g., reactions that maintain living systems, such as photosynthesis and respiration; reactions that have an impact on the environment, such as combustion reactions and decomposition of waste materials)

A.STS3C

Depth 3

describe the evidence for chemical changes; i.e., energy change, formation of a gas or precipitate, colour or odour change, change in temperature

A.STS3D

Depth 3

differentiate between endothermic and exothermic chemical reactions (e.g., combustion of gasoline and other natural and synthetic fuels, photosynthesis)

A.STS3E

Depth 3

classify and identify categories of chemical reactions; i.e., formation (synthesis), decomposition, hydrocarbon combustion, single replacement, double replacement

A.STS3F

Depth 3

translate word equations to balanced chemical equations and vice versa for chemical reactions that occur in living and nonliving systems

A.STS3G

Depth 3

predict the products of formation (synthesis) and decomposition, single and double replacement, and hydrocarbon combustion chemical reactions, when given the reactants

A.STS3H

Depth 3

define the mole as the amount of an element containing 6.02 x 1023 atoms (Avogadro's number) and apply the concept to calculate quantities of substances made of other chemical species (e.g., determine the quantity of water that contains 6.02 x1023 molecules of H2O)

A.STS3I

Depth 3

interpret balanced chemical equations in terms of moles of chemical species, and relate the mole concept to the law of conservation of mass

A.SK1A

Depth 3

 define and delimit problems to facilitate investigation

A.SK1B

Depth 3

design an experiment, identifying and controlling major variables (e.g., design an experiment to differentiate between categories of matter, such as acids, bases and neutral solutions, and identify manipulated and responding variables)

A.SK1C

Depth 3

state a prediction and a hypothesis based on available evidence and background information (e.g., state a hypothesis about what happens to baking soda during baking)

A.SK1D

Depth 3

evaluate and select appropriate instruments for collecting evidence and appropriate processes for problem solving, inquiring and decision making (e.g., list appropriate technology for classifying compounds, such as litmus paper or conductivity tester) 

A.SK2A

Depth 3

carry out procedures, controlling the major variables and adapting or extending procedures (e.g., when performing an experiment to illustrate conservation of mass, demonstrate an understanding of closed and open systems and control for loss or gain of matter during a chemical change)

A.SK2B

Depth 3

use library and electronic research tools to collect information on a given topic (e.g., information on compounds we use and their toxicity, using standard references, such as the Merck Index, as well as Internet searches)

A.SK2C

Depth 3

select and integrate information from various print and electronic sources or from several parts of the same source (e.g., collect information on research into subatomic matter, research how pre-contact First Nations communities used available materials such as brain tissue for tanning hides)

A.SK2D

Depth 3

demonstrate a knowledge of WHMIS standards by selecting and applying proper techniques for the handling and disposal of laboratory materials (e.g., recognize and use Material Safety Data Sheets [MSDS] information)

A.SK2E

Depth 3

select and use apparatus, technology and materials safely (e.g., use equipment, such as Bunsen burners, electronic balances, laboratory glassware, electronic probes and calculators correctly and safely)

A.SK3A

Depth 3

describe and apply classification systems and nomenclature used in the sciences (e.g., investigate periodicity in the periodic table, classify matter, and name elements and compounds based on IUPAC guidelines)

A.SK3B

Depth 3

apply and assess alternative theoretical models for interpreting knowledge in a given field (e.g., compare models for the structure of the atom)

A.SK3C

Depth 3

compare theoretical and empirical values and account for discrepancies (e.g., measure the mass of a chemical reaction system before and after a change, and account for any discrepancies)

A.SK3D

Depth 3

identify and explain sources of error and uncertainty in measurement, and express results in a form that acknowledges the degree of uncertainty (e.g., measure and record the mass of a material, use significant digits appropriately)

A.SK3E

Depth 3

identify new questions or problems that arise from what was learned (e.g., how did ancient peoples discover how to separate metals from their ores?; evaluate the traditional Aboriginal method for determining alkaline properties of substances)

A.SK4A

Depth 3

communicate questions, ideas and intentions; and receive, interpret, understand, support and respond to the ideas of others (e.g., use appropriate communication technology to elicit feedback from others)

A.SK4B

Depth 3

represent large and small numbers using appropriate scientific notation

A.SK4C

Depth 3

select and use appropriate numeric, symbolic, graphical and linguistic modes of representation to communicate ideas, plans and results (e.g., use appropriate Système international (SI) units, and IUPAC nomenclature) 

A.A1A

Depth 3

Show interest in science-related questions and issues, and confidently pursue personal interests and career possibilities within science-related fields (e.g., apply concepts learned in the classroom to the everyday use of chemicals; show interest in a broad scope of chemistry-related careers)

A.A2A

Depth 3

Appreciate that scientific understanding evolves from the interaction of ideas involving people with different views and backgrounds (e.g., recognize the contributions of Canadians to contemporary knowledge of the structure of matter; show awareness of and respect for traditional Aboriginal knowledge about the use of biotic and abiotic materials)

A.A3A

Depth 3

Seek and apply evidence when evaluating alternative approaches to investigations, problems and issues (e.g., evaluate inferences and conclusions based on particles of matter that cannot be observed directly)

A.A4A

Depth 3

Work collaboratively in planning and carrying out investigations, as well as in generating and evaluating ideas (e.g., contribute to group work willingly, assume a variety of roles and accept responsibility for any problems that arise)

A.A5A

Depth 3

Demonstrate sensitivity and responsibility in pursuing a balance between the needs of humans and a sustainable environment (e.g., recognize that environmental consequences may arise from the development, use and disposal of chemical materials)  

A.A6A

Depth 3

Show concern for safety in planning, carrying out and reviewing activities (e.g., acknowledge the need for regulations to govern the storage, handling and disposal of potentially hazardous materials in the school laboratory and at home or in the workplace)

B.STSK1A

Depth 3

illustrate, by use of examples from natural and technological systems, that energy exists in a variety of forms (e.g., mechanical, chemical, thermal, nuclear, solar)

B.STSK1B

Depth 3

describe, qualitatively, current and past technologies used to transform energy from one form to another, and that energy transfer technologies produce measurable changes in motion, shape or temperature (e.g., hydroelectric and coal-burning generators, solar heating panels, windmills, fuel cells; describe examples of Aboriginal applications of thermodynamics in tool making, design of structures and heating)

B.STSK1C

Depth 3

identify the processes of trial and error that led to the invention of the engine, and relate the principles of thermodynamics to the development of more efficient engine designs (e.g., the work of James Watt; improved valve designs in car engines)

B.STSK1D

Depth 3

analyze and illustrate how the concept of energy developed from observation of heat and mechanical devices (e.g., the investigations of Rumford and Joule; the development of pre-contact First Nations and Inuit technologies based on an understanding of thermal energy and transfer)

B.STSK2A

Depth 3

describe evidence for the presence of energy; i.e., observable physical and chemical changes, and changes in motion, shape or temperature

B.STSK2B

Depth 3

define kinetic energy as energy due to motion, and define potential energy as energy due to relative position or condition

B.STSK2C

Depth 3

describe chemical energy as a form of potential energy (e.g., energy stored in glucose, adenosine triphosphate [ATP], gasoline)

B.STSK2D

Depth 3

define, compare and contrast scalar and vector quantities

B.STSK2E

Depth 3

describe displacement and velocity quantitatively

B.STSK2F

Depth 3

define acceleration, quantitatively, as a change in velocity during a time interval: → a=∆→v/∆t

B.STSK2G

Depth 3

explain that, in the absence of resistive forces, motion at constant speed requires no energy input

B.STSK2H

Depth 3

recall, from previous studies, the operational definition for force as a push or a pull, and for work as energy expended when the speed of an object is increased, or when an object is moved against the influence of an opposing force

B.STSK2I

Depth 3

define gravitational potential energy as the work against gravity

B.STSK2J

Depth 3

relate gravitational potential energy to work done using Ep= mgh and W = Fd and show that a change in energy is equal to work done on a system: ΔE = W

B.STSK2K

Depth 3

quantify kinetic energy using Ek = 1/2 mv2 and relate this concept to energy conservation in transformations (e.g., for an object falling a distance "h" from rest: mgh = Fd = 1/2 mv2)

B.STSK2L

Depth 3

derive the SI unit of energy and work, the joule, from fundamental units

B.STSK2M

Depth 3

investigate and analyze one-dimensional scalar motion and work done on an object or system, using algebraic and graphical techniques (e.g., the relationships among distance, time and velocity; determining the area under the line in a force - distance graph)

B.STSK3A

Depth 3

describe, qualitatively and in terms of thermodynamic laws, the energy transformations occurring in devices and systems (e.g., automobile, bicycle coming to a stop, thermal power plant, food chain, refrigerator, heat pump, permafrost storage pits for food)

B.STSK3B

Depth 3

describe how the first and second laws of thermodynamics have changed our understanding of energy conversions (e.g., why heat engines are not 100% efficient)

B.STSK3C

Depth 3

define, operationally, "useful" energy from a technological perspective, and analyze the stages of "useful" energy transformations in technological systems (e.g., hydroelectric dam)

B.STSK3D

Depth 3

recognize that there are limits to the amount of "useful" energy that can be derived from the conversion of potential energy to other forms in a technological device (e.g., when the potential energy of gasoline is converted to kinetic energy in an automobile engine, some is also converted to heat; when electrical energy is converted to light energy in a light bulb, some is also converted to heat)

B.STSK3E

Depth 3

explain, quantitatively, efficiency as a measure of the "useful" work compared to the total energy put into an energy conversion process or device

B.STSK3F

Depth 3

apply concepts related to efficiency of thermal energy conversion to analyze the design of a thermal device (e.g., heat pump, high efficiency furnace, automobile engine)

B.STSK3G

Depth 3

compare the energy content of fuels used in thermal power plants in Alberta, in terms of costs, benefits, efficiency and sustainability

B.STSK3H

Depth 3

explain the need for efficient energy conversions to protect our environment and to make judicious use of natural resources (e.g., advancement in energy efficiency; Aboriginal perspectives on taking care of natural resources)

B.SK4

Depth 3

Communication and Teamwork: Work as members of a team in addressing problems, and apply the skills and conventions of science in communicating information and ideas and in assessing results

B.A1A

Depth 3

Show interest in science-related questions and issues, and pursue personal interests and career possibilities within science-related fields (e.g., apply concepts learned in the classroom to everyday phenomena related to energy; show interest in a broad scope of science-related fields in which energy plays a significant role)

B.A2A

Depth 3

Appreciate that scientific understanding evolves from the interaction of ideas involving people with different views and backgrounds (e.g., appreciate Aboriginal technologies of the past and present that use locally-available materials and apply scientific principles; recognize that science and technology develop in response to global concerns, as well as to local needs)  

B.A3A

Depth 3

Seek and apply evidence when evaluating alternative approaches to investigations, problems and issues (e.g., assess problem using a variety of criteria; respect alternative solutions; honestly evaluate limitations of their designs; be persistent in finding the best possible answer or solution to a question or problem)

B.A4A

Depth 3

Work collaboratively in carrying out investigations and in generating and evaluating ideas (e.g., select a variety of strategies, such as group brainstorming, active listening, paraphrasing and questioning, to find the best possible solution to a problem; work as a team member when assigning and performing tasks; accept responsibility for problems that arise)  

B.A5A

Depth 3

Demonstrate sensitivity and responsibility in pursuing a balance between the needs of humans and a sustainable environment (e.g., recognize that their choices and actions, and the choices and actions that technologists make, can have an impact on others and on the environment)

B.A6A

Depth 3

Show concern for safety in planning, carrying out and reviewing activities (e.g., demonstrate concern for self and others in planning and carrying out experimental activities and the design of devices; select safe methods for collecting evidence and solving problems)

C.STSK1A

Depth 3

trace the development of the cell theory: all living things are made up of one or more cells and the materials produced by these, cells are functional units of life, and all cells come from pre-existing cells (e.g., from Aristotle to Hooke, Pasteur, Brown, and Schwann and Schleiden; recognize that there are sub-cellular particles, such as viruses and prions, which have some characteristics of living cells)

C.STSK1B

Depth 3

describe how advancements in knowledge of cell structure and function have been enhanced and are increasing as a direct result of developments in microscope technology and staining techniques (e.g., electron microscope, confocal laser scanning microscope [CLSM])

C.STSK1C

Depth 3

identify areas of cell research at the molecular level (e.g., DNA and gene mapping, transport across cell membranes)

C.STSK2A

Depth 3

compare passive transport of matter by diffusion and osmosis with active transport in terms of the particle model of matter, concentration gradients, equilibrium and protein carrier molecules(e.g., particle model of matter and fluid-mosaic model)

C.STSK2B

Depth 3

use models to explain and visualize complex processes like diffusion and osmosis, endo- and exocytosis, and the role of cell membrane in these processes

C.STSK2C

Depth 3

describe the cell as a functioning open system that acquires nutrients, excretes waste, and exchanges matter and energy

C.STSK2D

Depth 3

identify the structure and describe, in general terms, the function of the cell membrane, nucleus, lysosome, vacuole, mitochondrion, endoplasmic reticulum, Golgi apparatus, ribosomes, chloroplast and cell wall, where present, of plant and animal cells

C.STSK2E

Depth 3

compare the structure, chemical composition and function of plant and animal cells, and describe the complementary nature of the structure and function of plant and animal cells

C.STSK2F

Depth 3

describe the role of the cell membrane in maintaining equilibrium while exchanging matter

C.STSK2G

Depth 3

describe how knowledge about semi-permeable membranes, diffusion and osmosis is applied in various contexts(e.g., attachment of HIV drugs to cells and liposomes, diffusion of protein hormones into cells, staining of cells, desalination of sea water, peritoneal or mechanical dialysis, separation of bacteria from viruses, purification of water, cheese making, use of honey as an antibacterial agent and berries as a preservative agent by traditional First Nations communities)

C.STSK2H

Depth 3

describe cell size and shape as they relate to surface area to volume ratio, and explain how that ratio limits cell size (e.g., compare nerve cells and blood cells in animals, or plant root hair cells and chloroplast-containing cells on the surface of leaves)

C.STSK3A

Depth 3

explain why, when a single-celled organism or colony of single-celled organisms reaches a certain size, it requires a multicellular level of organization, and relate this to the specialization of cells, tissues and systems in plants

C.STSK3B

Depth 3

describe how the cells of the leaf system have a variety of specialized structures and functions; i.e., epidermis including guard cells, palisade tissue cells, spongy tissue cells, and phloem and xylem vascular tissue cells to support the process of photosynthesis

C.STSK3C

Depth 3

explain and investigate the transport system in plants; i.e., xylem and phloem tissues and the processes of transpiration, including the cohesion and adhesion properties of water, turgor pressure and osmosis; diffusion, active transport and root pressure in root hairs

C.STSK3D

Depth 3

explain and investigate the gas exchange system in plants; i.e., lenticels, guard cells, stomata and the process of diffusion

C.STSK3E

Depth 3

explain and investigate phototropism and gravitropism as examples of control systems in plants

C.STSK3F

Depth 3

trace the development of theories of phototropism and gravitropism (e.g., from Darwin and Boysen-Jensen to Went)

C.SK1A

Depth 3

define and delimit problems to facilitate investigation (e.g., how do plants adjust to accommodate different environmental conditions such as varying levels of light and fertilizer)

C.SK1B

Depth 3

design an experiment, identifying and controlling major variables (e.g., design an investigation to determine the effect of CO2(g) concentration on the number of chloroplasts found in an aquatic plant cell)

C.SK1C

Depth 3

state a prediction and a hypothesis based on available evidence and background information (e.g., hypothesize how biochemical interconversions of starch and glucose might regulate the turgor pressure of cells; hypothesize the direction of root and plant growth of a bean plant growing on a rotating turntable, and predict the effects of varying RPMs on the angle of growth)

C.SK1D

Depth 3

identify the theoretical basis of an investigation, and develop a prediction and a hypothesis that are consistent with the theoretical basis (e.g., use the particle theory to hypothesize how the rate of diffusion is affected by varying particle size, and then predict the rates of diffusion of a sucrose solution and a starch solution when placed into dialysis tubing in a beaker of water)

C.SK1E

Depth 3

formulate operational definitions of major variables (e.g., define concentration gradient, equilibrium)

C.SK2A

Depth 3

carry out procedures, controlling the major variables and adapting or extending procedures (e.g., perform an experiment to determine the effect of tonicity on plasmolysis and deplasmolysis in plant cells, such as staminal hairs or aquatic leaf cells, identify variables that do affect plasmolysis, such as the amount of light and heat, and control these variables)

C.SK2B

Depth 3

use instruments effectively and accurately for collecting data (e.g., use a microscope to observe movement of water in plants; prepare wet mounts of tissue from flowering plants, and observe cellular structures specific to plant and animal cells; stain cells to make them visible)

C.SK2C

Depth 3

estimate quantities (e.g., compare sizes of various types of cells under the microscope; calculate magnification, field of view and scale)

C.SK2D

Depth 3

compile and organize data, using appropriate formats and data treatments to facilitate interpretation of the data (e.g., organize data obtained from measuring daily temperature and bloom dates of plant species, such as aspen, poplar, common purple lilac and crocus to determine a relationship between the two variables)

C.SK2E

Depth 3

use library and electronic research tools to collect information on a given topic (e.g., upload and download text, image, audio and video files on emerging technologies for studying cells)

C.SK2F

Depth 3

select and integrate information from various print and electronic sources or from several parts of the same source (e.g., create electronic documents containing multiple links, or summarize articles based on the scientific principles and/or technological developments) 

C.SK3A

Depth 3

compile and display, by hand or computer, evidence and information in a variety of formats, including diagrams, flow charts, tables, graphs and scatterplots (e.g., collect data on the number of stomata per unit area on various plant leaves that grow in areas of differing humidity, and compile this data in a spreadsheet and graph it to determine whether there is a relationship between the variables)

C.SK3B

Depth 3

interpret patterns and trends in data, and infer or calculate linear and nonlinear relationships among variables (e.g., compare the surface area to volume ratio of various cells, and relate the findings to the function of each cell; trace ingredients in modern medicines to their traditional counterparts)

C.SK3C

Depth 3

state a conclusion based on experimental data, and explain how evidence gathered supports or refutes the initial hypothesis (e.g., observe and record macroscopic and microscopic changes in a growing plant for evidence of differentiation)

C.SK3D

Depth 3

explain how data support or refute a hypothesis or prediction

C.SK3E

Depth 3

construct and test a prototype of a device or system, and troubleshoot problems as they arise (e.g., create a model of a cell to illustrate a certain function, for example, use a balloon and tape to represent a guard cell)

C.SK3F

Depth 3

identify new questions or problems that arise from what was learned (e.g., determine the purpose of cellular structures from observations of fresh and prepared materials, using dissecting and compound microscopes, or micrographs) 

C.SK4A

Depth 3

communicate questions, ideas and intentions; and receive, interpret, understand, support and respond to the ideas of others (e.g., describe cytoplasmic streaming in a single-celled organism, and communicate an inference about similar movement in the cells of a multicellular organism)

C.SK4B

Depth 3

select and use appropriate numeric, symbolic, graphical and linguistic modes of representation to communicate ideas, plans and results (e.g., draw analogies between division of labour in cells and in communities; record and explain the movement of water in plants)

C.A1A

Depth 3

Show interest in science-related questions and issues, and confidently pursue personal interests and career possibilities within science-related fields (e.g., apply concepts learned in the classroom to everyday phenomena related to cells and multicellular organisms; investigate careers in fields, such as botany, forestry, horticulture, cytology, genetics and health care)

C.A2A

Depth 3

Appreciate that scientific understanding evolves from the interaction of ideas involving people with different views and backgrounds (e.g., value the roles and contributions of men and women from many cultures in using science and technology to further our understanding of the cell and of living systems, recognize and appreciate the contributions of the traditional knowledge of Aboriginal peoples to science and technology)

C.A3A

Depth 3

Seek and apply evidence when evaluating alternative approaches to investigations, problems and issues (e.g., recognize that traditional Aboriginal cultures employed the principles of scientific inquiry through observation and experimentation to solve a variety of unique challenges)

C.A4A

Depth 3

Work collaboratively in planning and carrying out investigations, as well as in generating and evaluating ideas (e.g., assume responsibility for their share of the work in preparing for investigations, gathering and recording data; consider alternative approaches suggested by group members)

C.A5A

Depth 3

Demonstrate sensitivity and responsibility in pursuing a balance between the needs of humans and a sustainable environment (e.g., show care and respect for all forms of life; evaluate the impact on the environment of personal choices, as well as the choices scientists make when carrying out an investigation)

C.A6A

Depth 3

Show concern for safety in planning, carrying out and reviewing activities (e.g., demonstrate concern for self and others in planning and carrying out experimental activities; select safe methods of collecting evidence and solving problems)

D.STSK1A

Depth 3

explain how climate affects the lives of people and other species, and explain the need to investigate climate change (e.g., describe the responses of human and other species to extreme climatic conditions; describe housing designs, animal habitats, clothing and fur in conditions of extreme heat, cold, dryness or humidity, wind)

D.STSK1B

Depth 3

identify the Sun as the source of all energy on Earth

D.STSK1C

Depth 3

analyze, in general terms, the net radiation budget, using per cent; i.e., solar energy input, terrestrial energy output, net radiant energy

D.STSK1D

Depth 3

describe the major characteristics of the atmosphere, the hydrosphere and the lithosphere, and explain their relationship to Earth's biosphere

D.STSK1E

Depth 3

describe and explain the greenhouse effect, and the role of various gases - including methane, carbon dioxide and water vapour - in determining the scope of the greenhouse effect

D.STSK2A

Depth 3

describe, in general terms, how thermal energy is transferred through the atmosphere (i.e., global wind patterns, jet stream, Coriolis effect, weather systems) and through the hydrosphere (i.e., ocean currents, large bodies of water) from latitudes of net radiation surplus to latitudes of net radiation deficit, resulting in a variety of climatic zones (e.g., analyze static and animated satellite images)

D.STSK2B

Depth 3

investigate and describe, in general terms, the relationships among solar energy reaching Earth's surface and time of year, angle of inclination, length of daylight, cloud cover, albedo effect and aerosol or particulate distribution

D.STSK2C

Depth 3

explain how thermal energy transfer through the atmosphere and hydrosphere affects climate

D.STSK2D

Depth 3

investigate and interpret how variations in thermal properties of materials can lead to uneven heating and cooling

D.STSK2E

Depth 3

nvestigate and explain how evaporation, condensation, freezing and melting transfer thermal energy; i.e., use simple calculations of heat of fusion and vaporization , and Q=mcΔt to convey amounts of thermal energy involved, and link these processes to the hydrologic cycle.

D.STSK3A

Depth 3

describe a biome as an open system in terms of input and output of energy and matter and exchanges at its boundaries (e.g., compare and contrast cells and biomes as open systems)

D.STSK3B

Depth 3

relate the characteristics of two major biomes (i.e., grassland, desert, tundra, taiga, deciduous and rain forest) to net radiant energy, climatic factors (temperature, moisture, sunlight and wind) and topography (mountain ranges, large bodies of water)

D.STSK3C

Depth 3

analyze the climatographs of two major biomes (i.e., grasslands, desert, tundra, taiga, deciduous and rain forest) and explain why biomes with similar characteristics can exist in different geographical locations, latitudes and altitudes

D.STSK3D

Depth 3

identify the potential effects of climate change on environmentally sensitive biomes (e.g., impact of a reduction in the Arctic ice pack on local species and on Aboriginal societies that rely on traditional lifestyles)

D.STSK4A

Depth 3

investigate and identify human actions affecting biomes that have a potential to change climate (e.g., emission of greenhouse gases, draining of wetlands, forest fires, deforestation) and critically examine the evidence that these factors play a role in climate change (e.g., global warming, rising sea level(s))

D.STSK4B

Depth 3

identify evidence to investigate past changes in Earth's climate (e.g., ice core samples, tree ring analysis)

D.STSK4C

Depth 3

describe and evaluate the role of science in furthering the understanding of climate and climate change through international programs (e.g., World Meteorological Organization, World Weather Watch, Global Atmosphere Watch, Surface Heat Budget of the Arctic Ocean (SHEBA) project, The Intergovernmental Panel on Climate Change (IPCC); the study of paleoclimates and models of future climate scenarios)

D.STSK4D

Depth 3

describe the role of technology in measuring, modelling and interpreting climate and climate change (e.g., computer models, devices to take measurements of greenhouse gases, satellite imaging technology)

D.STSK4E

Depth 3

describe the limitations of scientific knowledge and technology in making predictions related to climate and weather (e.g., predicting the direct and indirect impacts on Canada's agriculture, forestry and oceans of climate change, or from changes in energy transfer systems, such as ocean currents and global wind patterns)

D.STSK4F

Depth 3

assess, from a variety of perspectives, the risks and benefits of human activity, and its impact on the biosphere and the climate (e.g., compare the Gaia hypothesis with traditional Aboriginal perspectives on the natural world; identify and analyze various perspectives on reducing the impact of human activity on the global climate)

D.SK1A

Depth 3

identify questions to investigate that arise from practical problems and issues (e.g., develop questions related to climate change, such as "How will global warming affect Canada's northern biomes?"; "How will a species be affected by an increase or decrease in average temperature?"

D.SK1B

Depth 3

design an experiment, and identify specific variables (e.g., investigate the heating effect of solar energy, using variables, such as temperature, efficiency and materials used)

D.SK1C

Depth 3

formulate operational definitions of major variables (e.g., define heat of fusion or vaporization as the quantity of energy to change the state of one mole of matter at its melting or boiling point in the absence of temperature change) 

D.SK2A

Depth 3

carry out procedures, controlling the major variables and adapting or extending procedures where required (e.g., perform an experiment to determine the ability of various materials to absorb or reflect solar energy)

D.SK2B

Depth 3

use instruments, effectively and accurately, to collect data (e.g., use a barometer, rain gauge, thermometer, anemometer)

D.SK2C

Depth 3

compile and organize data, using appropriate formats and data treatments to facilitate interpretation of the data (e.g., organize data to prepare climatographs for comparing biomes)

D.SK2D

Depth 3

use library and electronic research tools to collect information on a given topic (e.g., research sources of greenhouse gases; research protocols to control human sources of greenhouse gases)

D.SK2E

Depth 3

select and integrate information from various print and electronic sources or from several parts of the same source (e.g., collect weather and climate data, both historic and current, from the Internet)

D.SK3A

Depth 3

compile and display, by hand or computer, evidence and information in a variety of formats, including diagrams, flow charts, tables, graphs and scatterplots (e.g., construct climate graphs to compare any two of the following biomes: grassland, desert, tundra, taiga, deciduous forest, rain forest)

D.SK3B

Depth 3

identify and apply criteria for evaluating evidence and sources of information, including identifying bias (e.g., investigate the issue of global climate change)

D.SK3C

Depth 3

interpret patterns and trends in data, and infer or calculate linear and nonlinear relationships among variables (e.g., analyze a graph of mean monthly temperatures for cities that are at similar latitudes but have different climates)

D.SK3D

Depth 3

identify limitations of data, evidence or measurement (e.g., list the limitations of data and evidence of past climate changes, evaluate the validity of interpolations and extrapolations, use significant digits appropriately)

D.SK3E

Depth 3

state a conclusion based on experimental data, and explain how evidence gathered supports or refutes the initial hypothesis (e.g., summarize an analysis of the relationship between human activity and changing biomes)

D.SK3F

Depth 3

explain how data support or refute a hypothesis or a prediction (e.g., provide evidence for or against the hypothesis that human activity is responsible for climate change)

D.SK3G

Depth 3

propose alternative solutions to a given practical problem, identify the potential strengths and weaknesses of each, and select one as the basis for a plan (e.g., design a home for a specific climate; analyze traditional Aboriginal home designs for their suitability in particular climates)

D.SK4A

Depth 3

represent large and small numbers using appropriate scientific notation

D.SK4B

Depth 3

select and use appropriate numeric, symbolic, graphical and linguistic modes of representation to communicate ideas, plans and results (e.g., use appropriate Système international (SI) units, fundamental and derived units, significant digits)

D.SK4C

Depth 3

synthesize information from multiple sources or from complex and lengthy texts, and make inferences based on this information (e.g., use integrated software effectively and efficiently to produce work that incorporates data, graphics and text)

D.SK4D

Depth 3

identify multiple perspectives that influence a science-related decision or issue (e.g., consult a wide variety of electronic sources that reflect varied viewpoints and economic, social, scientific and other perspectives on global warming and climate change)

D.SK4E

Depth 3

develop, present and defend a position or course of action, based on findings (e.g., a strategy to reduce greenhouse gas emissions caused by the transportation of people and goods)

D.A1A

Depth 3

Show interest in science-related questions and issues, and confidently pursue personal interests and career possibilities within science-related fields (e.g., expand their inquiries beyond the classroom and into their everyday lives; show interest in careers related to climate and the environment)

D.A2A

Depth 3

Appreciate that scientific understanding evolves from the interaction of ideas involving people with different views and backgrounds (e.g., appreciate Aboriginal clothing and home designs of the past and present that use locally-available materials to adapt to climate; recognize that science and technology develop in response to global concerns, as well as to local needs; consider more than one factor or perspective when making decisions on Science, Technology and Society [STS] issues)  

D.A3A

Depth 3

Seek and apply evidence when evaluating alternative approaches to investigations, problems and issues (e.g., view a situation from different perspectives, propose options and compare them when making decisions or taking action; evaluate inferences and conclusions with a critical mind and without bias, being cognizant of the many factors involved in experimentation)  

D.A4A

Depth 3

Work collaboratively in carrying out investigations and in generating and evaluating ideas (e.g., choose a variety of strategies, such as active listening, paraphrasing and questioning, in order to understand other points of view; consider a variety of perspectives and seek consensus before making decisions)

D.A5A

Depth 3

Demonstrate sensitivity and responsibility in pursuing a balance between the needs of humans and a sustainable environment (e.g., recognize that human actions today may affect the sustainability of biomes for future generations; identify, without bias, potential conflicts between responding to human wants and needs and protecting the environment)

D.A6A

Depth 3

Show concern for safety in planning, carrying out and reviewing activities (e.g., demonstrate concern for self and others in planning and carrying out experimental activities involving the heating of materials; select safe methods for collecting evidence and solving problems)

B.SK1A

Depth 4

design an experiment, identifying and controlling major variables (e.g., design an experiment involving a combustion reaction to demonstrate the conversion of chemical potential energy to thermal energy)

B.SK1B

Depth 4

formulate operational definitions of major variables (e.g., predict or hypothesize the conversion of energy from potential form to kinetic form, in an experiment using a pendulum or free fall)

B.SK2A

Depth 4

carry out procedures, controlling the major variables and adapting or extending procedures (e.g., perform an experiment to demonstrate the equivalency of work done on an object and the resulting kinetic energy; design a device that converts mechanical energy into thermal energy)

B.SK2B

Depth 4

compile and organize data, using appropriate formats and data treatments to facilitate interpretation of the data (e.g., use a computer-based laboratory to compile and organize data from an experiment to demonstrate the equivalency of work done on an object and the resulting kinetic energy)

B.SK2C

Depth 4

use library and electronic research tools to collect information on a given topic (e.g., compile information on the energy content of fuels used in Alberta power plants; trace the flow of energy from the Sun to the lighting system in the school, identifying what changes are taking place at each stage of the process)

B.SK2D

Depth 4

select and integrate information from various print and electronic sources or from several parts of the same source (e.g., create electronic documents, containing multiple links, on using alternative energy sources, such as wind or solar, to generate electricity in Alberta; relate the importance of the development of effective and efficient engines to the time of the Industrial Revolution and to present-day first-world economics)

B.SK3A

Depth 4

compile and display evidence and information, by hand or using technology, in a variety of formats, including diagrams, flow charts, tables, graphs and scatterplots (e.g., plot distance - time, velocity - time and force - distance graphs; manipulate and present data through the selection of appropriate tools, such as scientific instrumentation, calculators, databases or spreadsheets)

B.SK3B

Depth 4

identify limitations of data or measurement (e.g., recognize that the measure of the local value of gravity varies globally; use significant digits appropriately)

B.SK3C

Depth 4

interpret patterns and trends in data, and infer or calculate linear and nonlinear relationships among variables (e.g., interpret a graph of changing kinetic and potential energy from a pendulum during one-half of a period of oscillation; calculate the slope of the line in a distance - time graph; analyze a simple velocity - time graph to describe acceleration; calculate the area under the line in a force - distance graph)

B.SK3D

Depth 4

compare theoretical and empirical values and account for discrepancies (e.g., determine the efficiency of thermal energy conversion systems)

B.SK3E

Depth 4

state a conclusion based on experimental data, and explain how evidence gathered supports or refutes the initial hypothesis (e.g., explain the discrepancy between the theoretical and actual efficiency of a thermal energy conversion system)

B.SK3F

Depth 4

construct and test a prototype of a device or system, and troubleshoot problems as they arise (e.g., design and build an energy conversion device)

B.SK3G

Depth 4

propose alternative solutions to a given practical problem, identify the potential strengths and weaknesses of each and select one as the basis for a plan (e.g., assess whether coal or natural gas should be used to fuel thermal power plants in Alberta)

B.SK3H

Depth 4

evaluate a personally designed and constructed device on the basis of self-developed criteria (e.g., evaluate an energy conversion device based on a modern or traditional design)

B.SK4A

Depth 4

represent large and small numbers using appropriate scientific notation

B.SK4B

Depth 4

select and use appropriate numeric, symbolic, graphical and linguistic modes of representation to communicate ideas, plans and results (e.g., use appropriate Système international (SI) units, fundamental and derived units; use advanced menu features within a word processor to accomplish a task and to insert tables, graphs, text and graphics)

B.SK4C

Depth 4

work cooperatively with team members to develop and carry out a plan and to troubleshoot problems as they arise (e.g., develop a plan to build an energy conversion device, seek feedback, test and review the plan, make revisions, and implement the plan)

Framework metadata

Source document
Alberta Programs of Study
License
CC BY 4.0 US