Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard detail
CCSS.Math.Content.HSF-TF.A.2
Standard
Depth 3Parent ID: 03817AE83F8844B99431FB019960222BStandard set: Grades 9, 10, 11, 12
Original statement
Quick facts
- Statement code
- CCSS.Math.Content.HSF-TF.A.2
- List ID
- 2.
- Standard ID
- 94EBD3F48B704469834F04A9C79B0F35
- ASN identifier
- S2526370
- Subject
- Mathematics (2010-2014)
- Grades
- 09, 10, 11, 12
- Ancestor IDs
- 03817AE83F8844B99431FB019960222B1A43B44DD27D411F8F69A4CFFB93F36893A7893D9E2C42D2ACC5BC44A934DF41
- Exact matches
- Source document
- TN Common Core State Standards for Mathematics (2010)
- License
- CC BY 3.0 US