Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard detail
CCSS.Math.Content.HSF-TF.A.2
Standard
Depth 3Parent ID: 27B799BC130145A4B5CC3BCEA13983A1Standard set: Grades 9, 10, 11, 12
Original statement
Quick facts
- Statement code
- CCSS.Math.Content.HSF-TF.A.2
- Standard ID
- 94CD1CE277174E47922D2ED9F5993E91
- ASN identifier
- S21341883
- Subject
- Common Core State Standards for Mathematics (2010)
- Grades
- 09, 10, 11, 12
- Ancestor IDs
- 27B799BC130145A4B5CC3BCEA13983A136A129CEF1764B2F9AAFB90D8BFD66EF1E3442DF9557468E9F404AA36A51A640
- Source document
- Common Core State Standards for Mathematics (2010)